Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(4): ofae169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665173

RESUMO

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA air filtration devices (air cleaners) in a school setting. Methods: We collected data over 7 weeks during winter 2022/2023 in 2 Swiss secondary school classes: environmental (CO2, particle concentrations), epidemiologic (absences related to respiratory infections), audio (coughing), and molecular (bioaerosol and saliva samples). Using a crossover design, we compared particle concentrations, coughing, and risk of infection with and without air cleaners. Results: All 38 students participated (age, 13-15 years). With air cleaners, mean particle concentration decreased by 77% (95% credible interval, 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without air cleaners vs 13 with them. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval, 0.44-1.18). Coughing also tended to be less frequent (posterior probability, 93%), indicating that fewer symptomatic students were in class. Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive) but not in bioaerosols (2/105) or on the HEPA filters of the air cleaners (4/160). The molecular detection rate in saliva was similar with and without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality and showed potential benefits in reducing respiratory infections. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission and the cost-effectiveness of using air cleaners.

2.
Appl Opt ; 62(2): 374-384, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630237

RESUMO

In this contribution, we present the development of a passively demodulated interferometer based on 3×3 waveguide couplers to measure light absorption of trace gases and aerosol particles via the photothermal effect. In contrast to a "classical" interferometer with two outputs, active quadrature control is not required to ensure a high sensitivity of the system. An algorithm for the evaluation of the photothermal interferometry signal from the outputs of asymmetric 3×3 couplers is detailed. The performance of the algorithm is demonstrated with NO2 calibration experiments using couplers with different working principles (i.e., fused-fiber and planar-waveguide based). The results of a laboratory measurement campaign using aerosolized nigrosin are discussed, and the measured aerosol absorption is compared to a reference instrument. A noise analysis shows interferometer phase noise to be the primary noise component. Improvements to the setup are recommended, which should improve the current instrumental detection limit in terms of absorption coefficient to below the current value of 100Mm-1 (1σ, 60 s). This corresponds to mass concentrations of about 10µg/m3 for submicrometer-size black carbon particles.

3.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234723

RESUMO

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA-air filtration devices (air cleaners) in a school setting. Methods: We collected environmental (CO2, particle concentrations), epidemiological (absences related to respiratory infections), audio (coughing), and molecular data (bioaerosol and saliva samples) over seven weeks during winter 2022/2023 in two Swiss secondary school classes. Using a cross-over study design, we compared particle concentrations, coughing, and the risk of infection with vs without air cleaners. Results: All 38 students (age 13-15 years) participated. With air cleaners, mean particle concentration decreased by 77% (95% credible interval 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without vs 13 with air cleaners. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval 0.44-1.18). Coughing also tended to be less frequent (posterior probability 93%). Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive), but not in bioaerosols (2/105 positive) or HEPA-filters (4/160). The detection rate was similar with vs without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality, showed a potential benefit in reducing respiratory infections, and were associated with less coughing. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission, and the cost-effectiveness of using air cleaners.

4.
Gesundheitswesen ; 84(7): 566-574, 2022 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-35835094

RESUMO

The relevance of aerosols for the transmission of the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is still debated. However, over time, in addition to distancing and hygiene rules, aerosol physics-based measures such as wearing face masks and ventilating indoor spaces were found to be efficient in reducing infections. In an interdisciplinary workshop "Aerosol & SARS-CoV-2" of the Association for Aerosol Research (GAeF) in cooperation with the German Society for Pneumology and Respiratory Medicine (DGP), the Professional Association of General Air Technology of the VDMA, the German Society for Virology (GfV), the Health Technology Society (GG) and the International Society for Aerosols in Medicine (ISAM) under the auspices of the Robert Koch Institute (RKI) in March 2021, the need for research and coordination on this topic was addressed. Fundamental findings from the various disciplines as well as interdisciplinary perspectives on aerosol transmission of SARS-CoV-2 and infection mitigation measures are summarized here. Finally, open research questions and needs are presented.


Assuntos
COVID-19 , Aerossóis , COVID-19/prevenção & controle , Alemanha , Humanos , Máscaras , SARS-CoV-2
5.
Sci Data ; 6(1): 157, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439840

RESUMO

A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements.

6.
J Geophys Res Atmos ; 121(20): 12343-12362, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28066694

RESUMO

Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10-4 to 10-3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 µm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.

7.
Science ; 344(6185): 717-21, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833386

RESUMO

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.


Assuntos
Aerossóis/química , Atmosfera/química , Mudança Climática , Compostos Orgânicos/química , Ácidos Sulfúricos/química , Simulação por Computador , Modelos Químicos , Oxirredução , Processos Fotoquímicos , Estações do Ano , Volatilização
8.
J Aerosol Med Pulm Drug Deliv ; 26(4): 228-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23421898

RESUMO

BACKGROUND: Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS: We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS: Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS: This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.


Assuntos
Técnicas de Cultura de Células/instrumentação , Pulmão/efeitos dos fármacos , Nanopartículas , Material Particulado/toxicidade , Aerossóis , Desenho de Equipamento , Umidade , Pulmão/metabolismo , Tamanho da Partícula , Material Particulado/metabolismo , Temperatura , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 107(15): 6646-51, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20133603

RESUMO

New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H(2)SO(4) and organic condensable species. Nucleation occurs at H(2)SO(4) concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H(2)SO(4) and an organic molecule. This suggests that only one H(2)SO(4) molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.


Assuntos
Aerossóis , Compostos Orgânicos/química , Aerossóis/química , Poluentes Atmosféricos/química , Atmosfera/química , Química Orgânica/métodos , Clima , Monitoramento Ambiental/métodos , Modelos Químicos , Tamanho da Partícula , Processos Fotoquímicos , Estações do Ano , Smog , Ácidos Sulfúricos/química
10.
Phys Chem Chem Phys ; 11(36): 7804-9, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19727486

RESUMO

Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which leads to the addition of more than approximately 3% soluble material will significantly enhance its hygroscopicity and CCN activity.


Assuntos
Aerossóis/química , Silicatos de Alumínio/química , Atmosfera/análise , Atmosfera/química , Poeira/análise , Material Particulado/química , Água/química , Absorção , Argila , Simulação por Computador , Clima Desértico , Gases/química , Tamanho da Partícula , Transição de Fase
11.
Phys Chem Chem Phys ; 11(36): 8091-7, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19727516

RESUMO

Hygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10-27 or 220-270 ppb) of alpha-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH=95-97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH=98-99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC). An apparent single-hygroscopicity parameter, kappa, of approximately 0.09, approximately 0.07-0.13, and approximately 0.02-0.04 was derived from CCNC, HTDMA and LACIS data, respectively, assuming the surface tension of pure water. Closure between HTDMA and CCNC data was achieved within experimental uncertainty, whereas closure between LACIS and CCNC was only achieved by assuming a concentration-dependent surface tension reduction, consequently resulting in lower CCNC-derived kappa values. Comparing different experimental techniques at varying precursor concentrations in more detail reveals further open questions. Varying precursor concentration influences hygroscopic growth factors at subsaturated RH, while it has no effect on the CCN activation. This difference in behaviour might be caused by precursor concentration-dependent surface tension depression or changing droplet solution concentration dependence of the water activity coefficient with varying SOA composition. Furthermore, evidence was found that the SOA might need several seconds to reach the equilibrium growth factor at high RH.


Assuntos
Aerossóis/química , Atmosfera/química , Compostos Orgânicos/química , Material Particulado/química , Gases/química , Modelos Químicos , Tamanho da Partícula , Transição de Fase , Molhabilidade
12.
Environ Sci Technol ; 42(9): 3316-23, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18522112

RESUMO

A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PM(wb), PM(traffic)). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PM(wb) and PM(traffic) values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Carbono/análise , Carbono/química , Poeira , Luz , Tamanho da Partícula , Análise de Regressão , Estações do Ano , Suíça , Temperatura , Fatores de Tempo , Madeira
13.
Environ Sci Technol ; 39(21): 8341-50, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16294872

RESUMO

Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.


Assuntos
Aerossóis , Emissões de Veículos/análise , Tamanho da Partícula , Controle de Qualidade , Suíça
14.
Environ Sci Technol ; 39(15): 5754-62, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16124312

RESUMO

Trace metals are ubiquitous in urban ambient air, with mass concentrations in the range of a few microg/m3 down to less than 100 pg/m3. To measure such low concentrations represents a challenge for chemical and physical analysis. In this study, ambient aerosol was collected in Zürich (Switzerland) in 1-h intervals and three size fractions (aerodynamic diameters 0.1-1 microm, 1-2.5 microm, and 2.5-10 microm), using a three-stage rotating drum impactor (RDI). The samples were analyzed by energy-dispersive Synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) to obtain size-segregated hourly elemental aerosol mass concentrations for Cr, Mn, Fe, Cu, Zn, Br, and Pb, along with S, Cl, and Ca under the selected experimental conditions. The high sensitivity of SR-XRF allowed for detection limits of <50 pg/m3 for most of the above elements, with a net analysis time of only 15 s per sample. The data obtained with this technique illustrate that there is a considerable gain of relevant information when time resolution for measurements is increased from 1 day to 1 h. The individual size fractions of a specific element may show significantly different short-term patterns.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Oligoelementos/análise , Aerossóis , Ar/normas , Tamanho da Partícula , Espectrometria por Raios X , Suíça , Síncrotrons , Fatores de Tempo
15.
Environ Sci Technol ; 39(7): 2219-28, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871257

RESUMO

In a numerical study the influence of relative humidity (RH) on aerosol scattering coefficients sigma was investigated. Based on a core/coating aerosol model, RH enhancement factors for scattering, xi(RH) = sigma(RH)/sigma(RH = 0), were calculated for the wavelengths lambda = 450, 550, and 700 nm for a summer and a winter case. The investigation was adapted to the situation (e.g., chemical composition, particle size distributions, hygroscopic behavior) of the high-alpine site Jungfraujoch (JFJ, 3580 m asl), where long-term measurements of dry aerosol scattering coefficients are performed at these wavelengths. The presented results are therefore representative of the lower free troposphere above a continent. The RH enhancement factors at a specific RH strongly depend on the average particle size. For example, at RH = 85% they vary between approximately 1.2 and approximately 2.7 in summer and between approximately 1.4 and approximately 3.8 in winter. It is shown that there is a strong relationship between xi and the Angstrom exponent å (based on scattering only) of the dry aerosol, which is directly derived from the dry scattering measurements. This allows for parametrizing xi for a specific wavelength and season with å and RH. The parametrization is applicable for RH up to approximately 90%--for higher RH the underlying hygroscopic models become unreliable--and for å between approximately -0.25 and approximately 2.75, which covers the range observed at the JFJ. Also addressed is a systematic error in the dry scattering coefficients measured with a nephelometer previously discussed in the literature, which arises from nonidealities in the angular intensity distribution of the light inside the instrument. This effect also depends strongly on the particle size and can be described by a correction factor C that can be parametrized with å. The scattering coefficient corrected for measurement artifacts at ambient RH for specific wavelength and season therefore can be estimated from the uncorrected dry nephelometer scattering coefficient sigma(neph) as sigma(å, RH) = C(å) x xi(å, RH) x sigma(neph). As additional information only ambient RH data are needed. The 95% confidence bound of this total correction ranges from less than 5% for low RH and large å up to approximately 40% for high RH and small å.


Assuntos
Atmosfera/química , Umidade , Modelos Químicos , Estações do Ano , Tamanho da Partícula , Espalhamento de Radiação , Suíça
16.
Environ Sci Technol ; 39(8): 2668-78, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15884364

RESUMO

A new environmental reaction smog chamber was built to simulate particle formation and growth similar to that expected in the atmosphere. The organic material is formed from nucleation of photooxidized organic compounds. The chamber is a 27 m3 fluorinated ethylene propylene (FEP) bag suspended in a temperature-controlled enclosure. Four xenon arc lamps (16 kW total) are used to irradiate primary gas components for experiments lasting up to 24 h. Experiments using irradiations of 1,3,5-trimethylbenzene-NOx-H2O at similar input concentrations without seed particles were used to determine particle number and volume concentration wall loss rates of 0.209+/-0.018 and 0.139+/-0.070 h(-1), respectively. The particle formation was compared with and without propene.


Assuntos
Aerossóis/química , Derivados de Benzeno/química , Físico-Química/métodos , Óxidos de Nitrogênio/química , Água/química , Aerossóis/análise , Poluentes Atmosféricos/análise , Alcenos/química , Atmosfera/química , Físico-Química/instrumentação , Compostos Orgânicos , Oxidantes Fotoquímicos/análise , Radiação , Smog/análise , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...